The Logical Data Warehouse: Design, Architecture and Technology



Classic data warehouse architectures are made up of a chain of databases. This chain consists of numerous databases, such as the staging area, the central data warehouse and several datamarts, and countless ETL programs needed to pump data through the chain. This architecture has served many organizations well. But is it still adequate for all the new user requirements and can new technology be used optimally for data analysis and storage?

Integrating self-service BI products with this architecture is not easy and certainly not if users want to access the source systems. Delivering 100% up-to-date data to support operational BI is difficult to implement. And how do we embed new storage technologies, such as Hadoop and NoSQL, into the architecture?

It is time to migrate gradually to a more flexible architecture in which new data sources can hooked up to the data warehouse more quickly, in which self-service BI can be supported correctly, in which OBI is easy to implement, in which the adoption of new technology, such as Hadoop and NoSQL, is easy, and in which the processing of big data is not a technological revolution, but an evolution.

The architecture that fulfills all these needs is called the logical data warehouse architecture. This architecture, introduced by Gartner, is based on a decoupling of reporting and analyses on the one hand, and data sources on the other hand.

The technology to create a logical data warehouse is available, and many organizations have already successfully completed the migration; a migration that is based on a step-by-step process and not on full rip-and-replace approach.

In this practical course, the architecture is explained and products will be discussed. It discusses how organizations can migrate their existing architecture to this new one. Tips and design guidelines are given to help make this migration as efficient as possible.

All public courses are available as in-house training. Contact us for more information.

Learning Objectives

  • What are the practical benefits of the logical data warehouse architecture and what are the differences with the classical architecture.
  • How can organizations successfully migrate to this flexible logical data warehouse architecture, step-by-step?
  • Understand the possibilities and limitations of the various available products.
  • How do data virtualization products work?
  • Discover how big data can be added transparently to the existing BI environment?
  • Understand how self-service BI can be integrated with the classical forms of BI?
  • Learn how users can be granted access to 100% up-to-date data without disrupting the operational systems?
  • What are the real-life experiences of organizations that have already implemented a logical data warehouse?

Course Outline

Challenges for the Classic Data Warehouse

Integrating big data with existing data and making it available for reporting and analytics
Supporting self-service BI and self-service data preparation
Faster time-to-market for reports
Polyglot persistency – processing data stored in Hadoop and NoSQL systems
Operational Business Intelligence, or analyzing of 100% up-to-date data

The Logical Data Warehouse

The essence : decoupling of reporting and data sources
From batch-integration to on-demand integration of data
The impact on flexibility and productivity – an improved time-to-market for reports
Examples of organizations operating a logical data warehouse
Can a logical data warehouse really work without a physical data warehouse?

Implementing a Logical Data Warehouse with Data Virtualization Servers

Why data virtualization?
Market overview: AtScale, Cirro Data Hub, Data Virtuality UltraWrap, Denodo Platform, fraXses, IBM Data Virtualization, RedHat JBoss Data Virtualization, Stone Bond Enterprise Enabler, and Tibco Data Virtualization Manager.
Importing non-relational data, such as XML and JSON documents, web services, NoSQL, and Hadoop data.
The importance of an integrated business glossary and centralization of metadata specifications.

Improving the Query Performance of Data Virtualization Servers

How does caching really work
Which virtual tables should be cached?
Query optimization techniques and the explain feature
Smart drivers/connectors can help improve query performance
How can SQL-on-Hadoop engines speed up query performance?
Working with multiple data virtualization servers in a distributed environment to minimize network traffic

Migrating to a Logical Data Warehouse

An A to Z roadmap
Guidelines for the development of a logical data warehouse
Three different methods for modelling: outside-in, inside-out, and middle-out
The value of a canonical data model
Considerations for security aspects
Step by step dismantling of the existing architecture
The focus on sharing of metadata specifications for integration, transformation, and cleansing

Self-Service BI and the Logical Data Warehouse

Why self-service BI can lead to “report chaos”
Centralizing and reusing metadata specifications with a logical data warehouse
Upgrading self-service BI into managed self-service BI
Implementing Gartner’s BI-modal environment

Big Data and the Logical Data Warehouse

New data storage technologies for big data, including Hadoop, MongoDB, Cassandra
The appearance of the polyglot persistent environment; or each application its own optimal database technology
Design rules to integrate big data and the data warehouse seamlessly
Big data is too “big” to copy
Offloading cold data with a logical data warehouse

Physical Data Lakes or Virtual Data Lakes?

What is a Data Lake?
Is developing a physical Data Lake realistic when working with Big Data?
Developing a virtual Data Lake with data virtualization servers
Can the logical Data Warehouse and the virtual Data Lake be combined?

Implementing Operational BI with a Logical Data Warehouse

Examples of operational reporting and operational analytics
Extending a logical data warehouse with operational data for real-time analytics
“Streaming” data in a logical data warehouse
The coupling of data replication and data virtualization

Making Data Vault more Flexibile with a Logical Data Warehouse

What exactly is Data Vault?
Using a Logical Data Warehouse to make data in a Data Vault available for reporting and analytics
The structured SuperNova design technique to develop virtual data marts
SuperNova turns a Data Vault in a flexible database

The Logical Data Warehouse and the Environment

Design principles to define data quality rules in a logical data warehouse
How data preparation can be integrated with a logical data warehouse
Shifting of tasks in the BICC
Which new development and design skills are important?
The impact on the entire design and development process

Concluding Remarks

Who It’s For

This course is intended for everyone who needs to be aware of developments in the field of business intelligence and data warehousing, such as:

Business Intelligence Specialists, Data Analysts, Data Warehouse Designers, Business Analysts, Data Scientists, Technology Planners, Technical Architects, Enterprise Architects, IT Consultants, IT Strategists, Systems Analysts, Database Developers, Database Administrators, Solutions Architects, Data Architects, IT Managers


Koulutustapahtuman päivittäinen alkaminen ja päättyminen: aamiainen 8:30, koulutus 9:00-16:15

Daily start and end of training event: breakfast 8:30, training 9:00-16:15


+ Lue koko esittely

The Logical Data Warehouse: Design, Architecture and Technology

2 Päivää
Paasitorni, Paasivuorenkatu 5 A, Helsinki
Ota yhteyttä

Koulutusohjelmalla / kurssilla ei ole aktiivisia aloituspäivämääriä, jos olet kiinnostunut kurssista ota yhteyttä.

Ota yhteyttä

Ottakaa yhteyttä:


  • Kenttä on validointitarkoituksiin ja tulee jättää koskemattomaksi.

Saattaisit olla kiinnostunut myös näistä

Datan hallinta

Business-Oriented Data Modelling Masterclass

Lue lisää
Tiedolla johtaminen

Practical steps for developing Data Strategy and Governance

Lue lisää
Datan hallinta

Data ja analytiikka ratkaisujen modernit toteutukset

Lue lisää